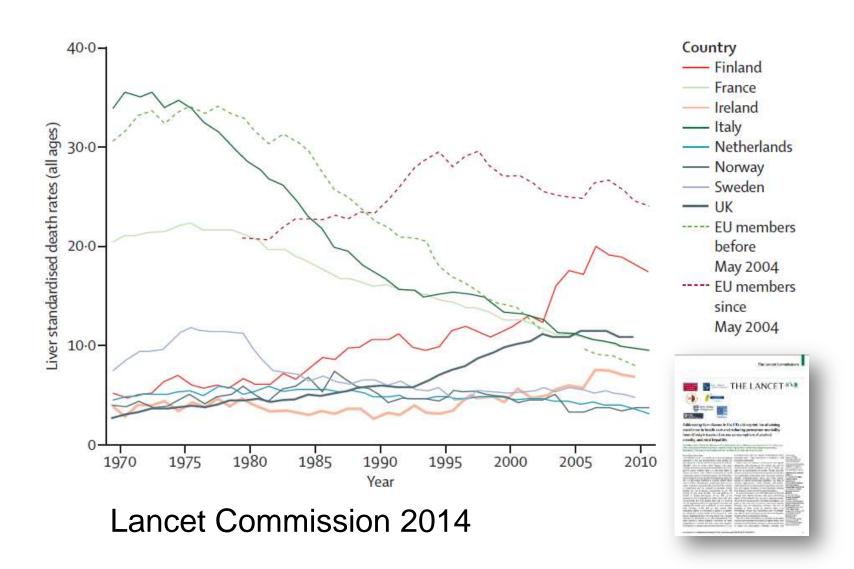
Chronic Liver Disease – A Taster Menu

Andrew Holt Ph.D FRCP

Consultant Hepatologist and Transplant Physician

The Liver Unit

QEHB



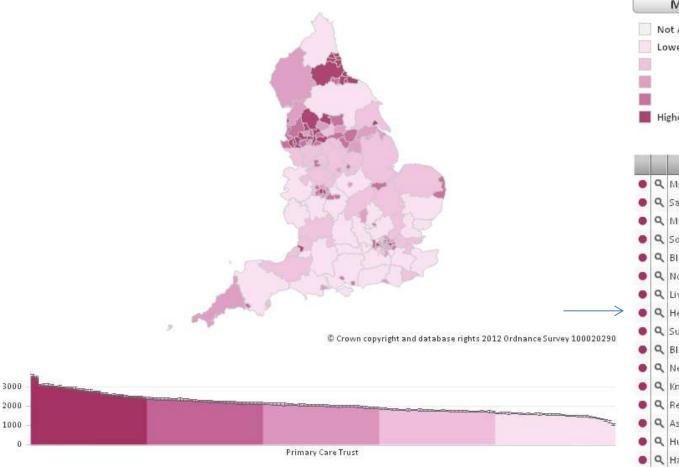
A Drinking Song

Wine comes in at the mouth
And love comes in at the eye;
That's all we shall know for truth
Before we grow old and die.
I lift the glass to my mouth,
I look at you, and I sigh.

-W. B. Yeats

The entrée

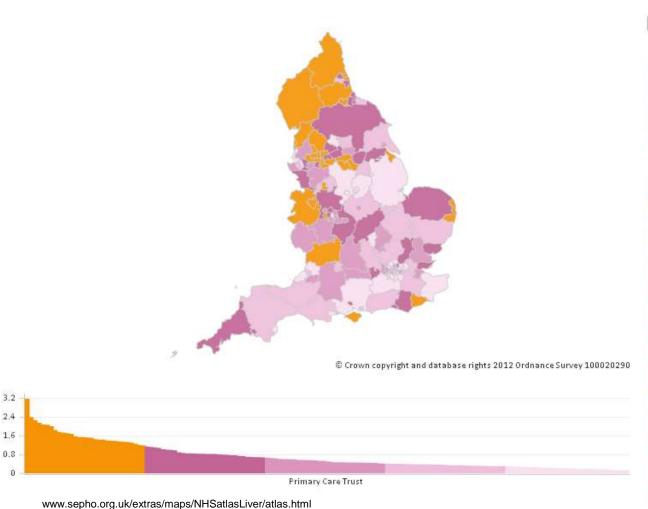
1·0 (1 to 1)	1 Ischaemic heart disease		1 Ischaemic heart disease	1.2 (1 to 2)	-43 (-49 to -28)
2·0 (2 to 2)	2 Self-harm		2 Self-harm	1-8 (1 to 2)	-16 (-26 to 8)
3·2 (3 to 4)	3 Road injury		3 Cirrhosis	3-7 (3 to 7)	109 (-4 to 175)
3.9 (3 to 4)	4 Breast cancer		4 Breast cancer	4·5 (3 to 6)	-24 (-31 to -16)
5·1 (4 to 6)	5 Lung cancer	/	5 Road injury	5-3 (3 to 7)	-34 (-44 to -17)
5-9 (5 to 6)	6 Stroke	·/···	6 Drug use disorders	5-6 (3 to 12)	812 (74 to 1361)
7-5 (7 to 9)	7 Colorectal cancer		7 Lung cancer	6-4 (3 to 7)	-22 (-35 to 7)
7-7 (7 to 9)	8 Cirrhosis	/	8 Stroke	8-0 (7 to 9)	-34 (-44 to -24)
9.6 (8 to 14)	9 Brain cancer	} /·[9 Colorectal cancer	8-9 (7 to 10)	-9 (-22 to 23)
9-7 (8 to 11)	10 Lower respiratory infections	-	10 Lower respiratory infections	10-8 (10 to 13)	-6 (-23 to 12)
13-5 (10 to 27)	11 Cervical cancer		11 Other cardiovascular and circulatory	11-3 (10 to 13)	34 (9 to 63)
14·1 (11 to 21)	12 Leukaemia		12 Brain cancer	11.5 (9 to 18)	-12 (-30 to 7)
14-1 (11 to 20)	13 Non-Hodgkin lymphoma	-3: A	13 Falls	15-7 (13 to 21)	-9 (-26 to 20)
4-8 (11 to 22)	14 Falls	14 Epilepsy		16-3 (12 to 23)	-4 (-21 to 23)
15-1 (11 to 26)	15 Ovarian cancer	15 Non-Hodgkin lymphoma		16-8 (12 to 22)	-12 (-33 to 27)
15-7 (12 to 20)	16 Other cardiovascular and circulatory	16 Leukaemia		18-2 (13 to 24)	-19 (-32 to 2)
17-1 (11 to 23)	17 Epilepsy	17 Ovarian cancer		18-2 (11 to 25)	-12 (-40 to 45)
17-7 (13 to 22)	18 COPD	k /\ I	18 Alcohol use disorders	19-1 (13 to 34)	230 (26 to 429)
18-5 (11 to 25)	19 Stomach cancer	IN IN A	19 Oesophageal cancer	19-6 (13 to 27)	8 (-28 to 41)
19-8 (13 to 28)	20 Interpersonal violence		20 Pancreatic cancer	19-6 (13 to 26)	8 (-15 to 39)
21-6 (18 to 26)	21 HIV/AIDS	N. K.	21 Cardiomyopathy	20-3 (16 to 24)	22 (-6 to 54)
22.9 (14 to 28)	22 Oesophageal cancer		22 Poisonings 2		18 (-43 to 72)
23-0 (14 to 29)	23 Pancreatic cancer	111/1/	23 Melanoma		7 (-27 to 29)
23.5 (12 to 29)	24 Melanoma	1	24 Cervical cancer	23-5 (13 to 29)	-35 (-53 to 5)
24·6 (21 to 28)	25 Diabetes	1	25 COPD	23-6 (19 to 27)	-25 (-38 to -10)
MI SS	26 Poisonings	1/	26 Diabetes		
	27 Cardiomyopathy	1/	28 Stomach cancer		
	32 Drug use disorders	//	29 Interpersonal violence		
	43 Alcohol use disorders	Y	34 HIV/AIDS	AN TANKAGE	ending order in ran



Alcohol related admissions: all ages

Rate of alcohol related admissions per 100,000 population, by PCT, 2011/12

Metadata	Help
Not Applicable Lowest value	
Highest value	


	Area name	Value ▼
٩	Middlesbrough	3,557
Q	Salford	3,480
٩	Manchester Teaching	3,084
Q	South Tyneside	3,083
٩	Blackburn with Darwen Teachi	3,076
Q	North Tyneside	3,061
٩	Liverpool	3,013
Q	Heart of Birmingham Teaching	3,011
٩	Sunderland Teaching	2,959
Q	Blackpool	2,943
٩	Newcastle	2,943
Q	Knowsley	2,903
٩	Redcar and Cleveland	2,848
Q	Ashton, Leigh and Wigan	2,841
٩	Hull Teaching	2,788
Q	Hartlepool	2,763

Prescription of drugs for alcohol addiction

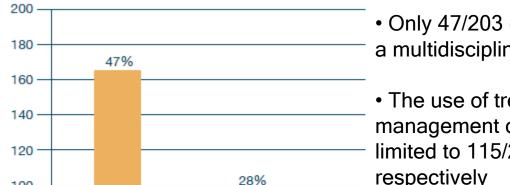
Annual Dose Equivalent per 100,000 population, by PCT,: 2006/7 - 2010/11

Metadata	Help
Not Applicable	
Lowest value	
Projection (CCC) - VCC	
Highest value	

		Area name	Value ▼
	Q	County Durham.	1.159
•	Q	Trafford	1.14
0	Q	Newcastle	1.127
0	Q	Western Cheshire	1.103
	Q	Northamptonshire Teaching	1.082
0	Q	Oldham	1.024
0	Q	Sandwell	1.005
0	Q	Brighton and Hove City	0.995
	Q	Kirklees	0.984
0	Q	Middlesbrough	0.9
0	Q	Hartlepool	0.874
0	Q	Warwickshire	0.853
	Q	East Sussex Downs and Weald	0.849
0	Q	Calderdale	0.844
0	Q	Southampton City	0.838
0	Q	Cornwall and Isles Of Scilly	0.837

Number of patients

100


80

60

40

20 -

0 .

Room for

improvement clinical

- Consultant Hepatologists restricted to 52/191 (28%) hospitals, 34 of which were University Teaching Hospitals.
- Only 47/203 (23%) hospitals reported having a multidisciplinary alcohol care team.
- The use of treatment pathways for the management of patients with AAH and/or ArLD limited to 115/204 and 112/204 hospitals respectively

8%

Less than

satisfactory

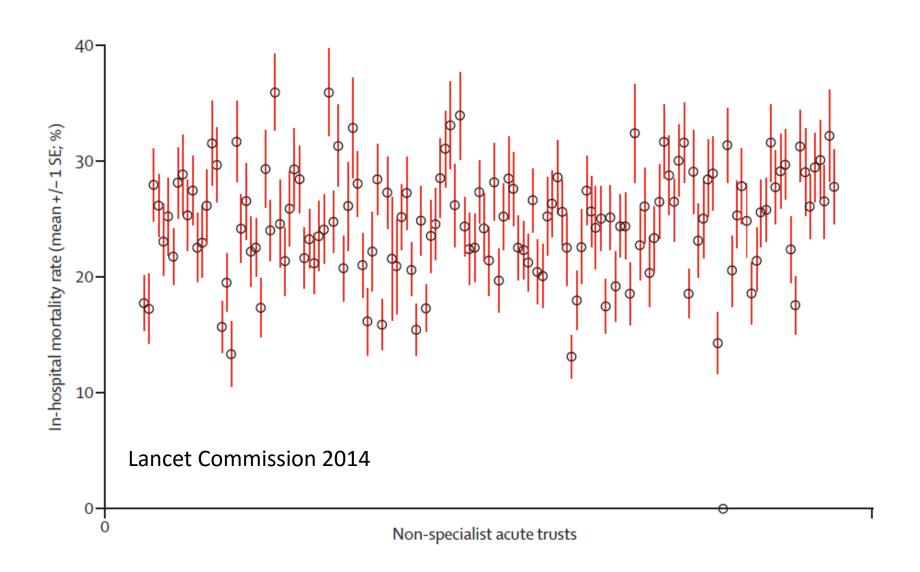
11%

Room for

improvement clinical

and organisational

6%


Room for

improvement organisational

Good practice

There is huge variation in the UK in outcomes in liver disease

At risk drinkers in Birmingham

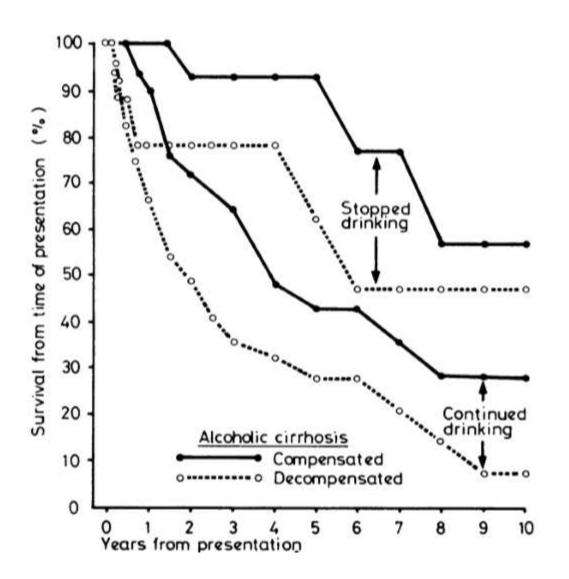
Population 1.1 million

Increasing Risk Drinkers 130,000

Higher Risk Drinkers 44,000

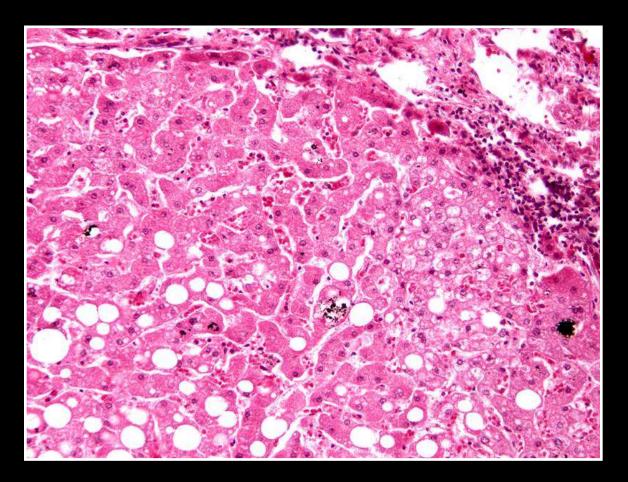
Dependent 38,000

...but only 13% are in treatment


Department of Health Feb 2011

A 20-year prospective study of cirrhosis.

Saunders JB, Walters JR, Davies AP, Paton A



Br Med J (Clin Res Ed). 1981 Jan 24;282(6260):263-6

Lucien Freud 1995

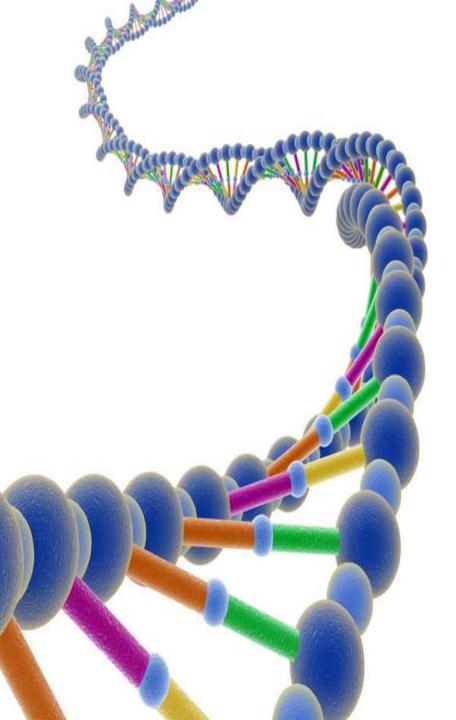
Alcoholic disease of the liver - Mallory F BJHH 1911;22:69

Fatty Change
Inflammatory Infiltrate
Degenerative/Apoptotic Hepatocytes - DAMPs
FIBROSIS

Obesity and Dietary Fat – a benign association?

Steatosis is a characteristic feature of ALD

1) Risk of cirrhosis and HCC increased by diets high in fat(1) and CHO(2) which promote inflammation(3)


Nanji AA et.al. Lancet 1985; 1:681-83
 Rotily M et.al. Eur J Clin Nut 1990;44:595-603
 Park EJ et.al. CELL 2010;140:197-208

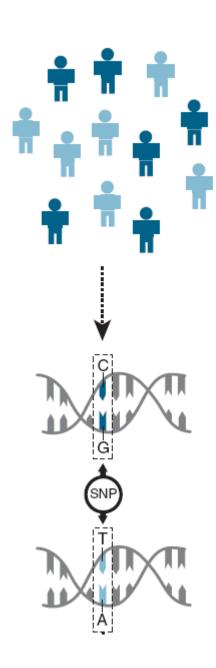
2) Obesity and associated hyperglycaemia increase incidence of all stages of ALD in heavy drinkers(4&5)

Raynard B et.al. Hepatology 2002;35:635-38
 Naveau S et.al. Hepatology 1997;25(1):108-11

3) Steatohepatitis *and/or* diabetes are independent risk factors for cirrhosis and HCC (6-8)

Stickel F GUT 2010;59:1303-6
 El Serag et.al. Gastroenterology 2004;126:460-8
 Jee SH et.al. JAMA 2005;293:194-202

GENETICS:


an important modulator of individual risk

 Twin studies show ALD concordance is 3X as likely in monozygotic than dizygotic twin pairings

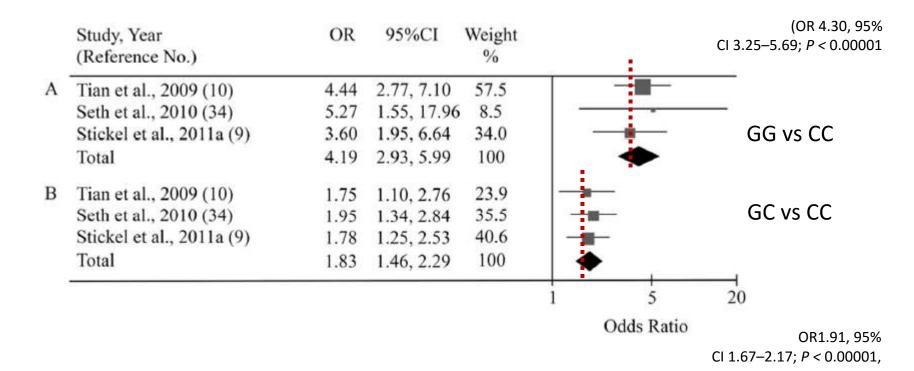
Hrubec Z et.al. Alcohol Clin Exp Res 2002;26(supp):66S-69S

- Women more susceptible than men
- PNPLA3 rs738409(G) the first genetically confirmed risk factor for ALD

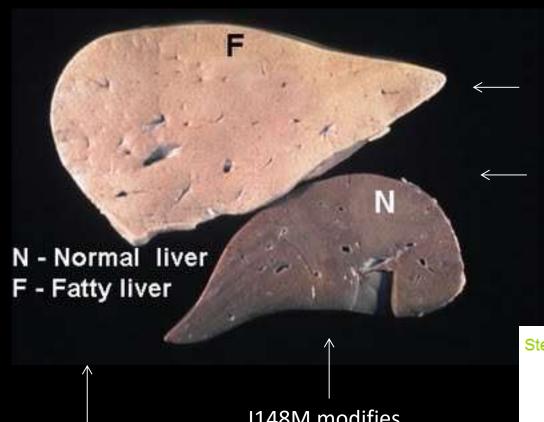
Stickel F et.al. GUT 2012;61:150-9

Genome wide association studies

I148M adiponutrin/patatin-like phospholipase domain-containing 3 gene (PNPLA3)


- **1. NAS**: Romeo S, et al.. Nat Genet 2008; **40**:1461-5.
- ALD: Stickel F, et al. Hepatology 2011; 53:86-95.
 Tian C, et.al. Nat Genetics 2010; 42:21-23.
 Trepo E, et al. J Hepatology 2011; 55:906-912
- 3. **NAFLD&HCC**: Sookoian S et.al. *Hepatology* 2011; **53**:1883-94. Trepo E, et al.. *Hepatology* 2013; Oct 1.

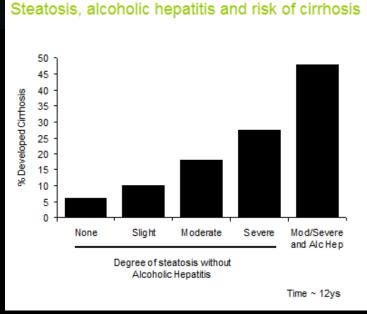
G allele confers a *higher risk of steatosis and/or fibrogenesis* in liver diseases, including:


- ALD
- Chronic hepatitis B and C infection, and
- Hereditary hemochromatosis.

The C>G SNP seems to be a risk factor in the development of advanced liver disease and hepatocellular carcinoma (HCC)

1148M (G>C Allele) association with Alcoholic Cirrhosis (ALC)

Meta-analysis of the association of the rs738409 PNPLA3 polymorphism with ALC. *Patients with ALC as cases compared with alcoholics without liver disease.*



I148M is a major determinant of liver fat content and disease risk in ALD

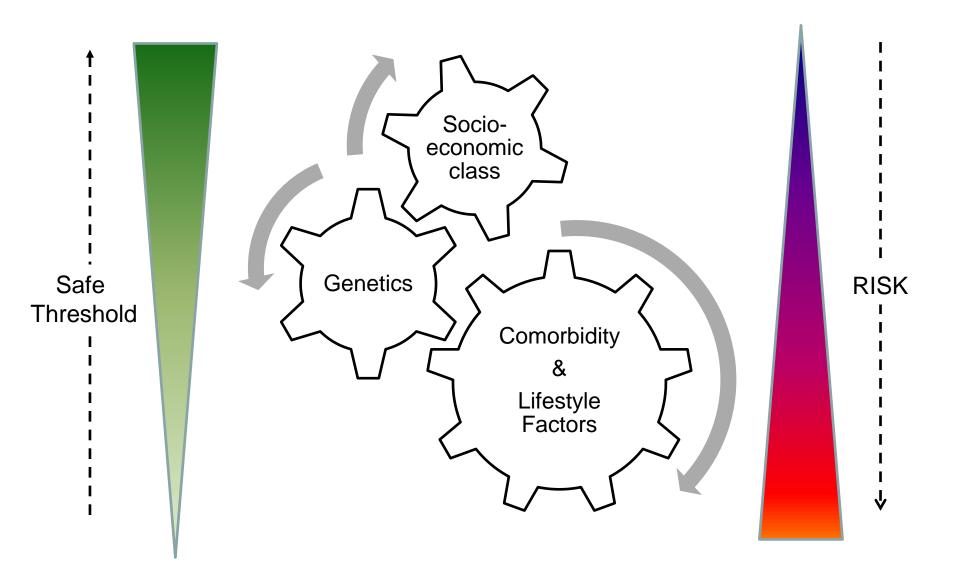
I148M may independently determine fibrogenesis c.f its effects on liver fat

I148M modifies progression to steatohepatitis in alcoholic liver disease

PNPLA3 increases risk of HCC

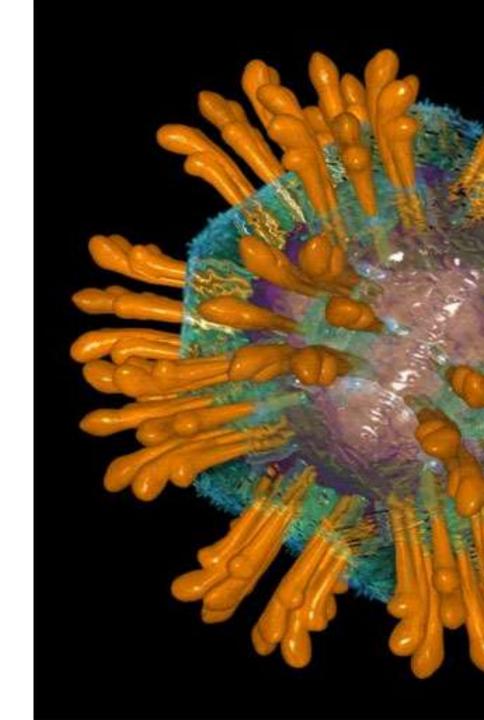
Nan Qin Nature 2014 Volume: 513, Pages:59-64

Microbiome and Dysbiosis

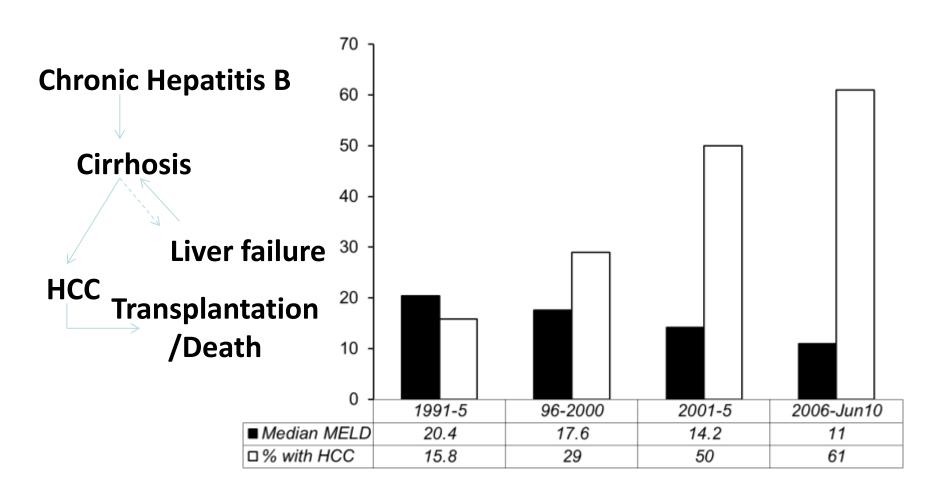

- CTP B8-C10 liver disease associated with increased gut permeability and translocation
- Microbiome dysbiosis increased in more advanced disease
- ArLD has a unique bile acid metabolome
- At similar MELD scores infected vs noninfected cirrhotics have very different flora
- Dysbiosis associated with increased IL-6, IL-1b
 & Secretory IgA

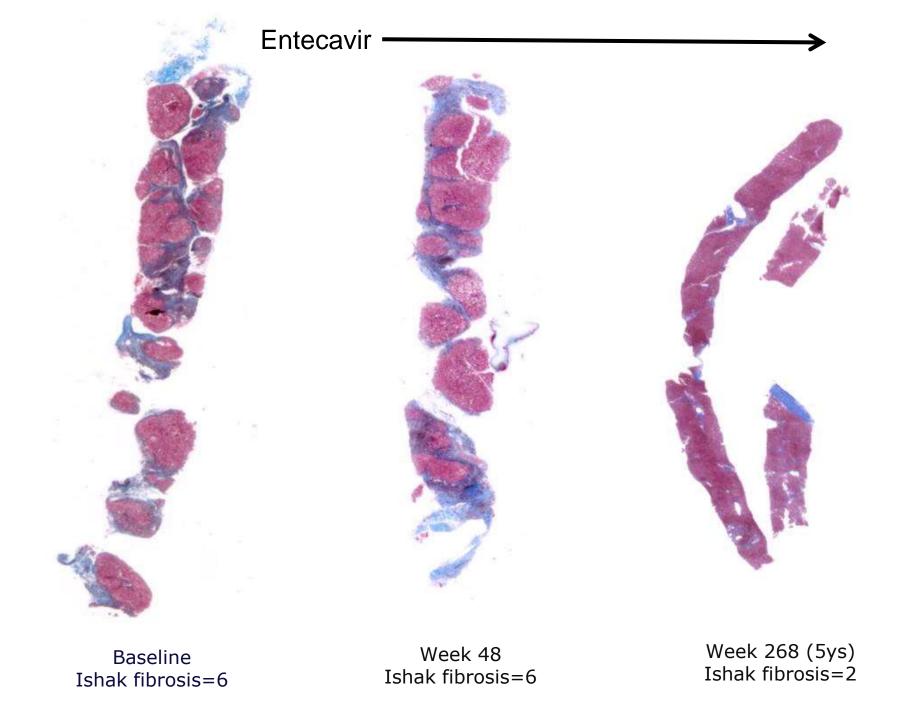
Inflammation

- IL-17/ENA/IL-8 Neutrophil infiltrate
- IL12 signalling
- IL-17 levels correlate with mortality
- Actions on the target receptor IL-22R signals through STAT-3 upregulated in Alcoholic Hepatitis

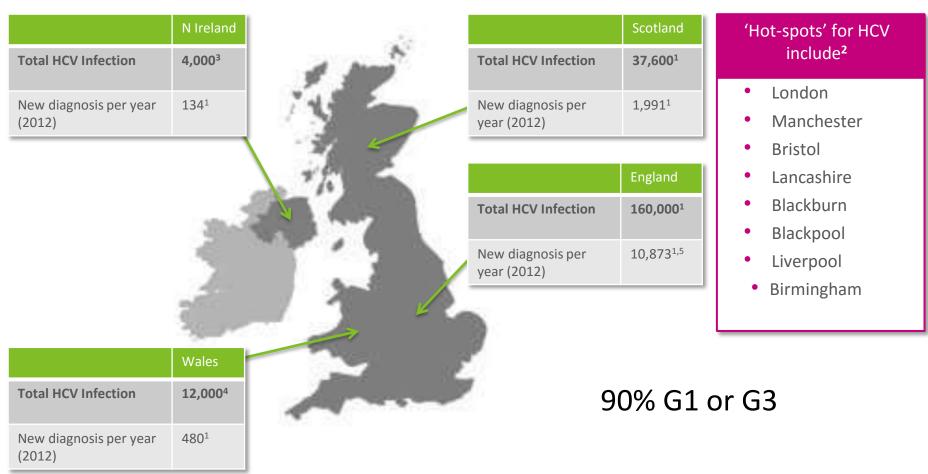

Persistent inflammation/immunosuppression catabolism syndrome = immune senescence

Alcohol Thresholds, Risk and Liver Disease




Viral liver disease

- Hepatitis B infection
- Hepatitis C infection
- Hepatitis D infection
- Hepatitis E

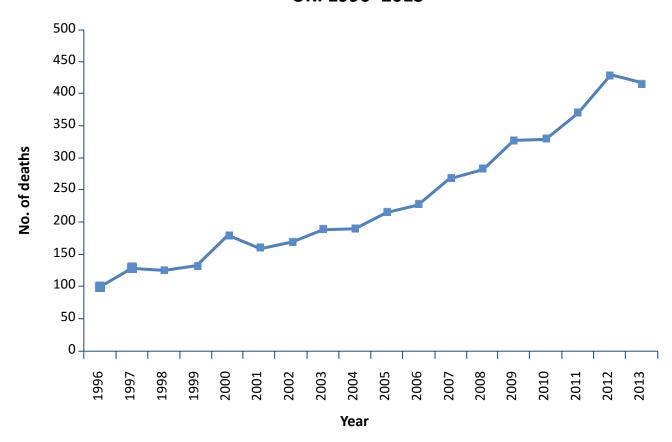


How NUCs have changed liver transplantation

HCV impacts significant patient numbers in the UK¹

Health Protection Agency, Hepatitis C in the UK 2013. Accessed June 2014

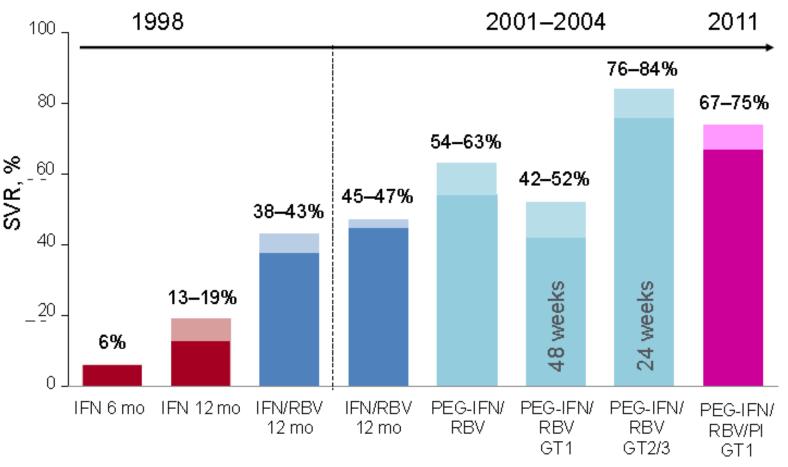
^{2.} HVA Action, Health and Wellbeing Boards & Hepatitis C: A review of the evidence from Joint Strategic Needs Assessments and Joint Health and Wellbeing


^{3.} Health and Safety Executive (HSE) website, Available at http://www.hse.gov.uk/biosafety/blood-borne-viruses/hepatitis-c.htm Accessed June 2014

4. Public Health Wales website, Available at: http://www.wales.nhs.uk/sitesplus/888/page/43746. Accessed June 2014

NHS Choices website. Available at: http://www.nhs.uk/conditions/hepatitis-c/pages/introduction.aspx Accessed on 8 May 2014

Deaths from HCV in the UK


ESLD* or HCC mentioned on the death certificate in the UK: 1996–2013

ESLD = end-stage liver disease; HCC = hepatocellular carcinoma

^{*} Defined by codes or text entries for ascites, bleeding oesophageal varices, hepatorenal syndrome, hepatic encephalopathy or hepatic failure

Treatment timeline of chronic hepatitis C

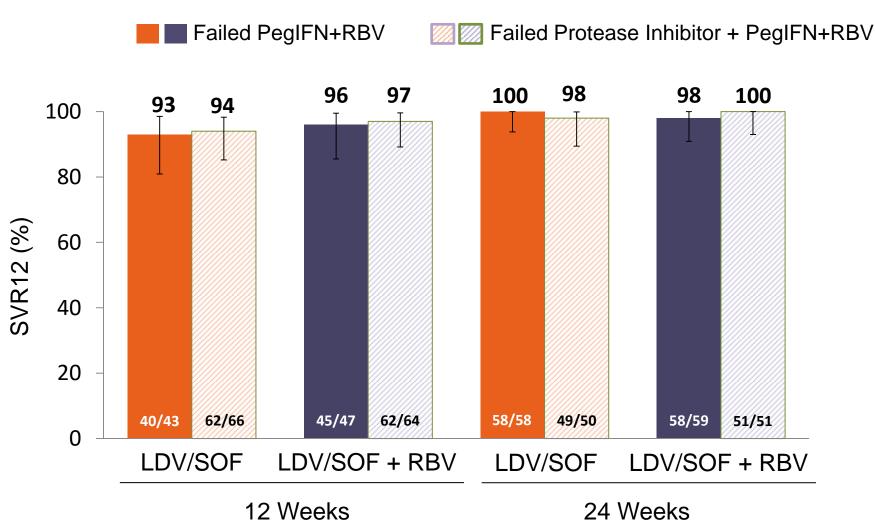
IFN trials

Adapted from Cornberg et al Hepatology 2013 USA trial: McHutchison NEJM 1998 International trial: Poynard Lancet 1998

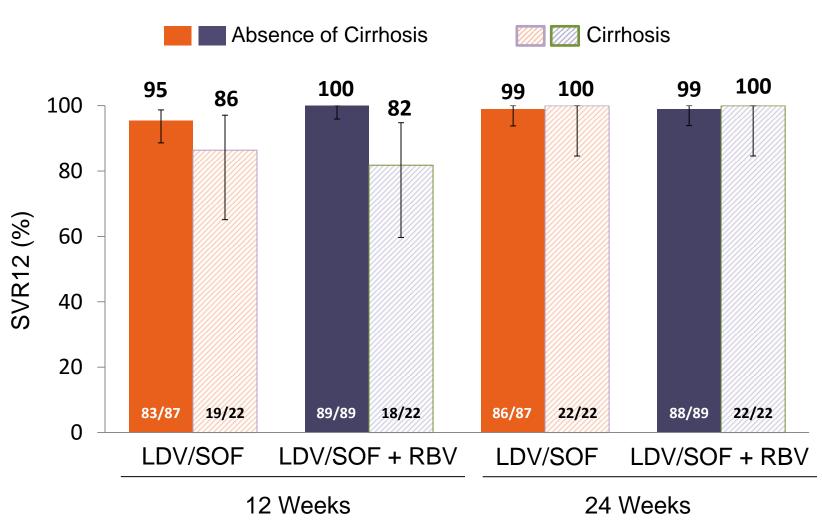
PEG-IFN trials
PEG-IFN2b: Manns Lancet 2001
PEG-IFN2a: Fried NEJM 2002;
Hadziannis Ann Int Med 2004

PI trials

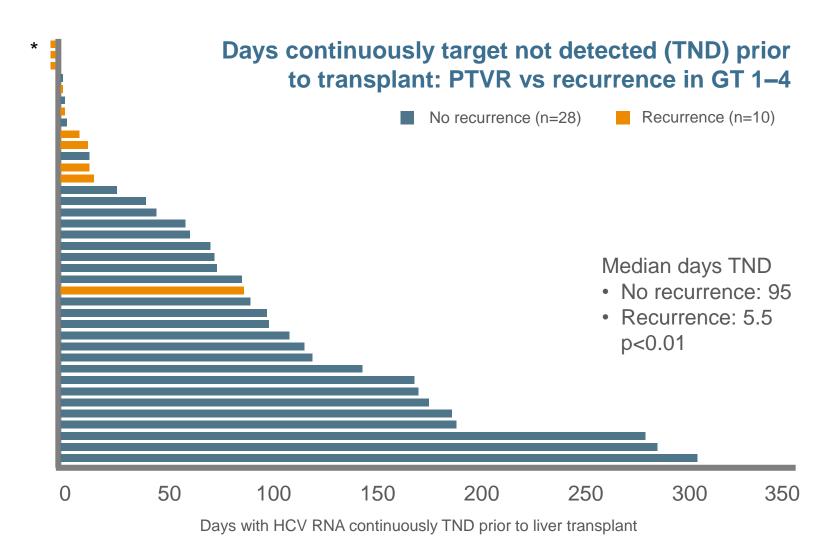
Boceprevir: Poordad NEJM 2011 (non-black cohort)


Telaprevir: Jacobsen NEJM 2011

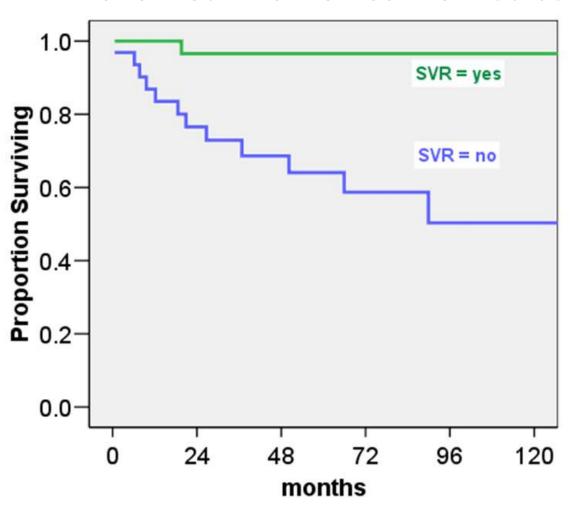
"The past is a foreign country: they do things differently there..."


L.P. Hartley

The Go Between: 1953


ION-2 Treatment Experienced

ION-2 Treatment Experienced


Study 2025: no recurrence vs recurrence in GT 1-4

^{*3} patients with recurrent HCV had 0 consecutive days TND before transplant

HCV Treatment Post-LT

Patient survival vs treatment outcome

(Birmingham unpublishe

pharma	Protease Inhibitor	NS5A inhibitor	Polymerase Inhibitor	ribavirin	duration (weeks)	cure rate	comments
MSD	MK 5172	MK 8742		not needed	12	>90%	including prior IFN non- responders
Gilead ION-1		Ledipasvir	Sofosbuvir	not needed	12	>90%	treatment-naïve
Gilead ION-2		Ledipasvir	Sofosbuvir	not needed	12 - 24	80- 100%	including prior PI non-responders
AbbVie	ABT450 /ritonavir	Ombitasvir	Dasabuvir	always included	12	>90%	including prior IFN non- responders
Gilead Janssen	Simeprevir		Sofosbuvir	not needed	12	>90%	including prior IFN non- responders

Copyright 2012 tagxedo.com

Child-Pugh score and prognosis

Child-Pugh A

Prolonged survival expected in most patients – referral premature

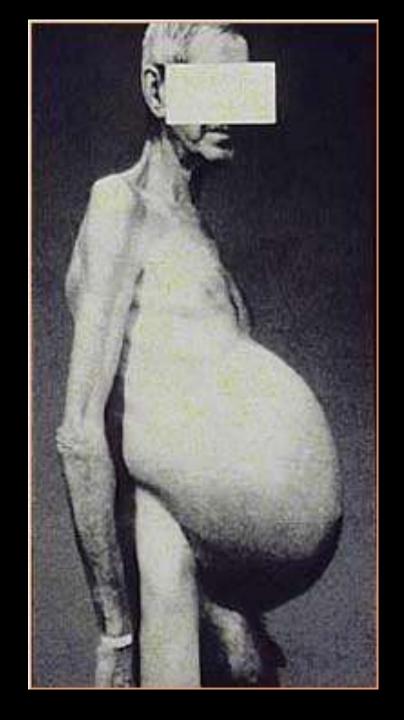
- Variceal haemorrhage
- Sepsis
- Portal vein thrombosis
- Liver cancer

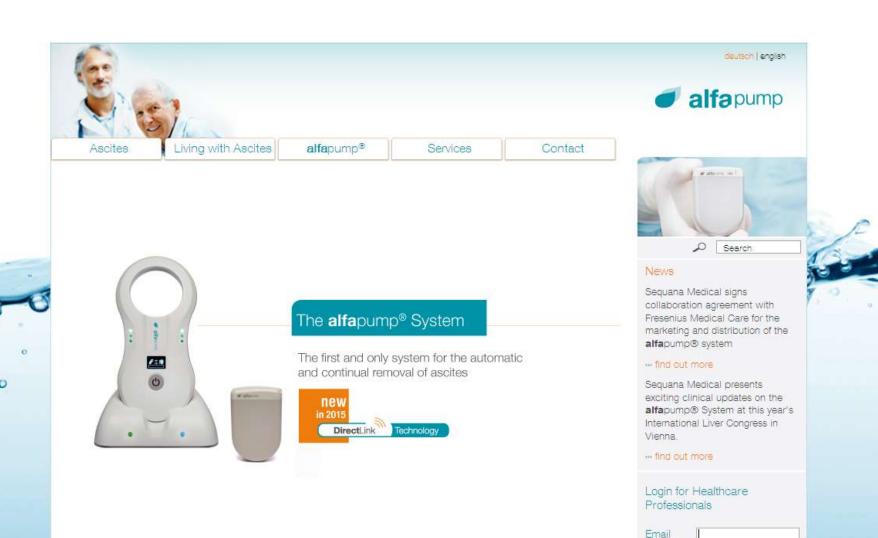
Graftable

Ungraftable

Child-Pugh B

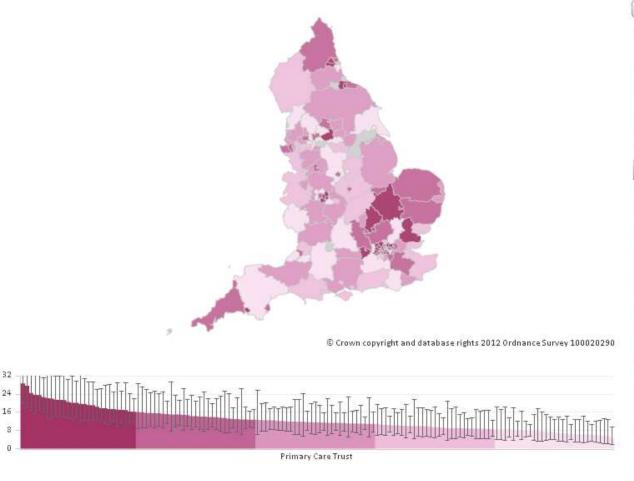
Suitable time for patient referral – good results predicted


Variceal haemorrhage


An unpredictable event – patient may die or may decompensate rapidly, precluding transplantation

Child-Pugh C

Transplantation becoming a higher-risk procedure Successful transplantation still possible but likelihood of survival reduced


Password

Liver Transplant by residence in PCT

Rate of liver transplantation per 100,000 population, by PCT,: 2006/7 - 2010/11

		Area name	Value ▲
0	٩	East Riding Of Yorkshire	4.5
	٩	Greenwich Teaching	5.5
	Q	Salford	5.6
	Q	Hull Teaching	5.7
	Q	Nottingham City	5.9
	٩	Wiltshire	6
	Q	Solihull	6.1
	Q	North Lancashire Teaching	6.1
	Q	West Essex	6.2
	٩	Sunderland Teaching	6.2
	Q	Oxfordshire	6.5
	Q	Barnsley	6.6
	٩	East Sussex Downs and Weald	6.7
	٩	Walsall Teaching	6.8
	Q	East Lancashire Teaching	7.2
	Q	Dudley	7.3

